

Gradle Essentials

Master the fundamentals of Gradle with this quick and
easy-to-read guide

Kunal Dabir

Abhinandan

BIRMINGHAM - MUMBAI

Gradle Essentials

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the authors, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: December 2015

Production reference: 1161215

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78398-236-3

www.packtpub.com

www.packtpub.com

Credits

Authors
Kunal Dabir

Abhinandan

Reviewers
Eric Berry

André Burgaud

Michał Huniewicz

Fredrik Sandell

Commissioning Editor
Amarabha Banerjee

Acquisition Editors
Richard Brookes-Bland

Larissa Pinto

Content Development Editor
Rashmi Suvarna

Technical Editor
Madhunikita Sunil Chindarkar

Copy Editor
Trishya Hajare

Project Coordinator
Izzat Contractor

Proofreader
Safis Editing

Indexer
Hemangini Bari

Production Coordinator
Shantanu N. Zagade

Cover Work
Shantanu N. Zagade

About the Authors

Kunal Dabir has over 10 years of experience working with clients ranging from
Fortune 500 companies to startups. Currently, he works as a Lead Consultant at
ThoughtWorks. He is a Java user group's co-organizer and speaks at various
meet-ups and conferences.

While he is always eager to learn a new language, he usually codes in languages
such as Groovy, Scala, JavaScript, CoffeeScript, Ruby, and Java. He frequently
contributes to open source projects and also hosts his own projects on GitHub.

He has always been passionate about automating and scripting. From there, he got a
knack for build tools. Apart from Gradle, he has spent a fair amount of time writing
build scripts with tools such as Ant, Maven, Grunt, and Gulp. He was introduced to
Gradle in 2011 while using Gaelyk. Since then, Gradle has become his tool of choice
for build automation.

He can be found on Twitter and GitHub as @kdabir.

Acknowledgments

First and foremost, a big thanks to my loving wife, Smita, and adorable son, Nairit.
Both of them patiently tolerated me spending countless hours in front of my Mac
and never complained. I would like to thank my parents for always doing everything
that they could so that I could do what I like. I dedicate this book to Smita, Nairit,
Aai, and Baba.

This book would not have been possible without Packt's trust in me. I would
like to thank the editors and coordinators from Packt, including Richard, Parita,
Priyanka, Rashmi, Madhunikita, and many more. I would also like to thank
Abhinandan for providing a helping hand with the project at the time it was
required the most. Also, heartfelt thanks to all the reviewers, André Burgaud, Eric
Berry, Fredrik Sandell, and Michał Huniewicz, for painstakingly reviewing all the
chapters and providing detailed feedback.

I am grateful to ThoughtWorks for being such an amazing place where I learned so
many things.

Last but not the least, this acknowledgement can not be complete without thanking
the folks who made Gradle so awesome, those who built and maintained Groovy,
and the Groovy community. Kudos to all for the hard work.

Abhinandan is a Java guy with an extensive experience in software design,
architecture, and deployment and automation frameworks. He is passionate about
providing solutions for different business needs. His other passions include hiking,
reading, and travelling. You can contact him at designationtraveller@yahoo.com.

Like how a film cannot be made with just actors and directors—it requires lots of
different team members' help, who support at different stages until the movie gets
released— a book can't be written with just the effort of one person or the author. It
requires lots of support from different people at different stages, without which
it would not be possible to put the thoughts on paper and make it available to
the audience.

First and foremost, I would like to thank my family for all the
support they gave me throughout this book. They never complained
about the weekends and vacations that I compromised while
working on this book.

I would like to express my gratitude to the Packt Publishing team
(Parita, Purav, and Rashmi), who provided support from the
initiation of the idea until the publication of the book. I appreciate
that they believed in me and provided me the opportunity to become
the co-author of this book.

I would like to thank the reviewers who helped me to improve the
quality of this book.

Thanks to Mainak for the quality input and comments, which helped
to complete this book. I could not have done it without you.

About the Reviewers

Eric Berry is the co-founder and vice president of engineering at Keeply Inc. He
graduated in 2003 from Cal Poly Pomona with a BS in computer science, and has
more than 11 years of full-stack development experience working for Evite (http://
www.evite.com/), eHarmony (http://www.eharmony.com/), and Chegg (http://
www.chegg.com/). He was first introduced to Gradle in late 2010 while working at
eHarmony, and created Chegg's middle-tier SOA using Gradle for all Java-based
projects. As a supporter of open source software, he's the plugin release manager for
the jEdit text editor and also the original author of the Gradle-release and Gradle-
templates plugins.

He has worked as a senior software engineer at Evite specializing in full-stack, JSP,
Servlet, Spring Framework, Hibernate, "web-2.0" JavaScript based frontend.

He has also worked as a senior software engineer at eHarmony specializing in full-
stack, Java, Spring, Struts, Groovy, Spring Integration, Jersey.

He has worked as a lead software engineer at Chegg specializing in backend
services, Java, Spring, Hibernate, Gradle, Jersey.

http://www.evite.com/
http://www.evite.com/
http://www.eharmony.com/
http://www.chegg.com/
http://www.chegg.com/

André Burgaud is a software engineer who is passionate about new technologies,
programming languages in general, and Python in particular.

He started in law enforcement where he built up an interest in security. A career
change led him to join the telecommunication department of the Gendarmerie
headquarters in France; later, he implemented network management systems
for Qwest broadband services in Minnesota, USA. He currently leads a software
development department at Infinite Campus, focusing on the infrastructure for
complex web applications.

During his spare time, he attempts to quench his thirst for technology by exploring
programming languages, tools, operating systems, servers, or cloud services;
also, he likes attending local meetups or online classes, listening to podcasts,
and reading books.

Michał Huniewicz is a London-based professional software developer, amateur
photo journalist, and one-time dervish. Currently, he is shifting his focus to big data
challenges and has been involved in projects across a variety of industries, including
banking, media, finance, telecoms, and government. He was also the head developer
of an award-winning community portal. He holds an MSc degree in computer
science from Adam Mickiewicz University. Learn more about him at http://www.
m1key.me/.

He has also reviewed Gradle Effective Implementation Guide from Packt Publishing.

I would like to thank my friend, Bianca, for being such an amazing
inspiration over the years—dziękuję.

Fredrik Sandell is a full-stack software developer with many years of experience
developing Java-based web applications. He holds a MSc degree in networks and
distributed systems from the Chalmers University of Technology and is currently
based in Stockholm, Sweden.

Fredrik is employed at a fantastic company called Squeed AB.

http://www.m1key.me/
http://www.m1key.me/

www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print, and bookmark content
• On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
www.PacktPub.com

[i]

Table of Contents
Preface v
Chapter 1: Running Your First Gradle Task 1

Installing Gradle 2
Installing manually 3

Installing on Mac OS X and Linux 3
Installing on Windows 4

Alternate methods of installing Gradle 5
Installing via OS-specific package managers 6
Installing via SDKMAN 6

Verifying the installation 7
Setting JVM options 7

The Gradle command-line interface 8
The first Gradle build script 11

Task name abbreviation 12
Gradle Daemon 13
Gradle Wrapper 14

Generating wrapper files 14
Running a build via wrapper 14

Summary 15
Chapter 2: Building Java Projects 17

Building a simple Java project 17
Creating a build file 18
Adding source files 18
Building the project 19
A brief introduction to plugins 22

Unit testing 23
Adding a unit test source 23
Adding the JUnit to the classpath 24
Running the test 25

Table of Contents

[ii]

Viewing test reports 26
Fitting tests in the workflow 28

Bundling an application distributable 30
Running the application with Gradle 32
Building the distribution archive 33

Generating IDE project files 35
Summary 36

Chapter 3: Building a Web Application 37
Building a simple Java web project 37

Creating source files 38
Creating a build file 41
Building the artifact 42
Running the web application 44

Plugins to the rescue 45
References 47
Project dependencies 48

External libraries 48
The dynamic version 49
Transitive dependencies 50

Dependency configurations 51
Repositories 53

Summary 54
Chapter 4: Demystifying Build Scripts 55

Groovy for Gradle build scripts 56
Why Groovy? 56
Groovy primer 57

Running Groovy code 57
Variables 58
Data structures 62
Methods 64
Classes 67

Another look at applying plugins 69
Gradle – an object-oriented build tool 70
Build phases 71

Initialization 71
Configuration 71
Execution 72
Life cycle callbacks 73

Gradle project API 73
Project methods 74

Project properties 74
Extra properties on a project 76

Table of Contents

[iii]

Tasks 77
Attaching actions to a task 78
Task flow control 78

dependsOn 79
finalizedBy 79
onlyIf 79
mustRunAfter and shouldRunAfter 80

Creating tasks dynamically 80
Setting default tasks 81
Task types 81

Using task types 82
Creating task types 82

References 84
Groovy 84
Gradle API and DSL used in this chapter 84

Summary 85
Chapter 5: Multiprojects Build 87

The multiproject directory layout 87
The settings.gradle file 89
Organizing build logic in multiproject builds 91

Applying a build logic to all projects 92
Applying build logic to subprojects 95
Dependency on subprojects 96

Summary 98
Chapter 6: The Real-world Project with Gradle 99

Migrating from an Ant-based project 99
Importing an Ant file 100
Using AntBuilder API 101
Rewriting Ant tasks to Gradle tasks 102

Migrating from a Maven project 103
Publishing artifacts 106
Continuous Integration 108
Generating documentation 111
Summary 113

Chapter 7: Testing and Reporting with Gradle 115
Testing with TestNG 115
Integration testing 119
Code coverage 121
Code analysis reports 124
Summary 128

Table of Contents

[iv]

Chapter 8: Organizing Build Logic and Plugins 129
Extracting build logic to buildSrc 129
The first plugin 133
Configuring plugins 136
Summary 137

Chapter 9: Polyglot Projects 139
The polyglot application 140
Building Groovy projects 140
Building Scala projects 144
Joint compilation 147
References 147
Summary 147

Index 149

[v]

Preface
When I first came across Gradle in 2011, it was a young yet powerful tool. If I
remember correctly, the version was 0.9. It was difficult for me to get started despite
Gradle having an adequate official documentation. What I missed the most was a
guide that would just help me understand the core concepts first, without having to
go through the entire documentation.

Gradle is a fantastic build tool. There is so much to learn about it that new users are
often clueless about where to start. It is unwise to expect an application developer to
go through the entire Gradle reference material just to understand the basics.

This book attempts to help a reader get started with Gradle by revealing the key
concepts in a step-by-step manner. It introduces a more advanced topic succinctly.
This book focuses on the practical usage of Gradle that a reader can immediately put
to use on his or her project. This book strives to stay true to the spirit of 'essentials' by
avoiding going into every possible feature and option that Gradle has to offer. Code
samples for applications have been consciously kept very small in order to avoid
distractions from application logic.

This book is a quick start guide for Gradle. If you are a Java developer already
building your code with Ant or Maven and want to switch to Gradle, this book helps
you to quickly understand the different concepts of Gradle. Even if you do not have
exposure to other build tools such as Ant or Maven, you can start afresh on Gradle
with the help of this book. It starts with the basics of Gradle and then gently moves
to concepts such as multimodule projects, migration strategies, testing strategies,
Continuous Integration, and code coverage with the help of Gradle.

Preface

[vi]

What this book covers
This book can be roughly divided into three parts.

Section 1 includes Chapter 1, Running Your First Gradle Task, Chapter 2, Building Java
Projects, and Chapter 3, Building a Web Application. This section introduces the basics
of Gradle, with very simple examples, which helps readers to create build files for
Java projects and Web applications. It gives a gentle start without involving any
complex concepts.

Section 2 includes Chapter 4, Demystifying Build Scripts, and Chapter 5, Multiprojects
Build. This section helps the reader to understand the underpinning of Gradle in
more depth, still maintaining the 'essentials' aspect of this book. It also helps the
reader to understand how to interpret and write scripts that conform to Gradle DSL.

Section 3 includes Chapter 6, The Real-world Project with Gradle, Chapter 7, Testing
and Reporting with Gradle, Chapter 8, Organizing Build Logic and Plugins, and Chapter
9, Polyglot Projects. This section covers more real-world use cases that Gradle users
come across. Some examples include migrating to Gradle from the existing build
system, using Gradle on CI servers, maintaining code quality with Gradle, using
Gradle to build project languages such as Groovy and Scala, and so on. These
concepts mostly revolve around what various plugins have to offer and also allows
the reader to create their own custom plugins.

Also, there are multiple places in all chapters where the reader can find tips,
references, and other informative notes.

Chapter 1, Running Your First Gradle Task, starts with an introduction to Gradle and
its installation, subsequently moving on to exploring the Gradle command-line
interface, and finally running the first build file.

Chapter 2, Building Java Projects, explains topics such as building Java applications
and libraries, unit testing with JUnit, reading test reports, and creating application
distributions.

Chapter 3, Building a Web Application, deals with building and running Web
applications. It also briefly introduces concepts such as dependencies,
repositories, and configurations.

Chapter 4, Demystifying Build Scripts, starts with a primer to the Groovy syntax in the
context of Gradle DSL. Then, it goes on to explain the backbone concepts of a Gradle
build such as build phases, project API, and various topics related to Gradle tasks.

Preface

[vii]

Chapter 5, Multiprojects Build, covers a few options to structure multiproject
directories. Then, covers organization of a build logic, which is a multiproject build.

Chapter 6, The Real-world Project with Gradle, deals with one of the important
problems faced by developers, that is, migrating their existing Ant and Maven
scripts to Gradle. This chapter provides different strategies and examples, which
guide developers to perform migration in a more simpler and manageable way.
This chapter also gives an insight into the different ways of publishing artifacts with
the help of Gradle and also how a developer can integrate Gradle with Continuous
Integration workflow.

Chapter 7, Testing and Reporting with Gradle, deals with the integration of the TestNG
framework with Gradle. Apart from unit testing with TestNG, it also deals with
different strategies for integration testing, which the user can follow to execute
integration tests separate from unit test cases. It also discusses about integrating
Sonar with Gradle, which helps developers to analyze the quality of code on
different parameters, and JaCoCo integration for code coverage analysis.

Chapter 8, Organizing Build Logic and Plugins, discusses one of the important building
blocks of Gradle plugins, without which you will find this book incomplete. It
discusses the needs of the plugin and the different ways in which developers can
create a plugin based on the project size and complexities.

Chapter 9, Polyglot Projects, demonstrates how to use Gradle for projects that use
languages apart from or in addition to Java; this chapter shows the examples of
building Groovy and Scala projects.

What you need for this book
Your system must have the following software before executing the code mentioned
in the book:

• Gradle
• Java 1.7 or above

For chapters 6-8, you need the following softwares:

• Jenkins
• Ant 1.9.4
• Maven 3.2.2

Preface

[viii]

Who this book is for
This book is for Java and other JVM-based language developers who want to use
Gradle or who are already using Gradle on their projects.

No prior knowledge of Gradle is required, but some familiarity with build-related
terminologies and an understanding of the Java language would help.

Conventions
In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"This class exposes just one method called greet which we can use to generate a
greeting message."

A block of code is set as follows:

task helloWorld << {
 println "Hello, World!"
}

Any command-line input or output is written as follows:

$ gradle --version

Or it may be written as follows:

> gradle --version

Whenever some output or code block is truncated it is denoted by an ellipsis (...)
like this:

$ gradle tasks

...

Other tasks

helloWorld

...

Preface

[ix]

New terms and important words are shown in bold. Words that you see on
the screen, for example, in menus or dialog boxes, appear in the text like this:
"Once the Submit button is pressed, we'll get the desired result."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or disliked. Reader feedback is important for us as it helps
us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files from your account at http://www.
packtpub.com for all the Packt Publishing books you have purchased. If you
purchased this book elsewhere, you can visit http://www.packtpub.com/support
and register to have the files e-mailed directly to you.

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support

Preface

[x]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or
added to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

[1]

Running Your First
Gradle Task

We are embarking on a fast-paced ride to learn the Gradle Essentials. To take a
gentle start, we will first install Gradle. Then, we will get friendly with the Gradle's
command-line interface by looking at the usage of the gradle command. Also, by
the end of this chapter, we would have run our first Gradle build script.

Building a software artifact is a complex process involving various activities such
as compiling source code, running automated tests, packaging distributable files,
and so on. These activities are further split into many steps, often dependent on the
execution order, fetching dependent artifacts, resolving configuration variables, and
so on. Executing all these activities manually is cumbersome and often error-prone.
A good build automation tool helps us reduce the effort and time it takes to build
correct artifacts in a repeatable manner.

Gradle is an advanced build automation tool that brings the best from various
proven build tools and innovates on top of them. Gradle can be used to produce
artifacts such as web applications, application libraries, documentation, static sites,
mobile apps, command lines, and desktop applications. Gradle can be used to build
projects based on various languages and technology stacks such as Java, C/C++,
Android, Scala, Groovy, Play, Grails, and many more. As Java Virtual Machine
(JVM) happens to be one of the first class supported platforms by Gradle, the
examples in this book will mostly focus on building Java-based projects.

Gradle gives us full control over build just like Ant but without ever needing to
repeat ourselves by providing intelligent defaults in the form of conventions. Gradle
truly works by conventions over configuration, just like Maven. However, it never
gets in our way when we need to deviate. Also this puts it in complete contrast with
Maven. Gradle attempts to maintain the right balance between conventions and
configurability.

Running Your First Gradle Task

[2]

The previous generation of build tools, such as Ant and Maven, chose XML to
represent the build logic. While XML is human-readable, it is more of a machine-
friendly format (easier to be read/written by programs). It is great for representing
and exchanging hierarchical data, but when it comes to writing any logic, even the
simplest logic can easily take hundreds of lines. On the other hand, a Gradle build
can be configured using very human-friendly Groovy DSL. Groovy is a powerful,
expressive, and low ceremony dynamic language and is a perfect fit for build scripts.

Gradle itself is a JVM application written in Java and Groovy. Since Gradle runs on
the JVM, it runs the same way on Windows, Mac OS X and Linux. Gradle also boasts
an advanced dependency resolution system and can resolve dependencies from the
existing Maven and Ivy repositories or even a file system.

Over the years Gradle has matured into a very stable open source project with
active contributors and commercial backing. The rich plugin ecosystem and vibrant
community makes Gradle an excellent choice for a variety of projects. Gradle
already has an impressive list of adopters, which includes tech giants such as Google
Android, LinkedIn, Unity 3D, Netflix and many more. Open source libraries and
frameworks such as Spring, Hibernate, and Grails are using Gradle to power
their builds.

Installing Gradle
Before we move forward with running Gradle, we must have it installed on our
machine. There are multiple ways through which Gradle can be installed and
updated. We will first see a more manual way to install Gradle and then take a quick
look at installing it via some commonly used package managers. We can choose any
one method that fits the bill. Irrespective of the way we install Gradle, we must meet
the following prerequisite.

Gradle needs Java Runtime Environment (JRE) 6 or Java Development Kit (JDK)
1.6 or higher. There is no other dependency. We recommend having JDK installed.
To verify this, on the command line, we can check the Java version with the
following command:

$ java -version

java version "1.8.0"

Java(TM) SE Runtime Environment (build 1.8.0-b132)

Java HotSpot(TM) 64-Bit Server VM (build 25.0-b70, mixed mode)

Chapter 1

[3]

If we don't see the output more or less like the one shown in the preceding
command, there is problem with our JDK installation.

The latest JDK can be downloaded from the following URL:
http://www.oracle.com/technetwork/java/javase/
downloads/index.html

Installing manually
If we want a finer control over the installation then this is a suitable route. This could
be the case, when we cannot use the package managers, want very specific binaries
to be downloaded and installed, or behind corporate firewalls where automatic
downloading by package managers is not allowed. We need to download the Gradle
binaries and make them available for use on the command line.

The latest Gradle distribution can be downloaded from http://www.gradle.org/
downloads. As of writing the latest version is 2.9.

Gradle binary distribution comes in two flavors as follows:

• gradle-2.9-all.zip: This contains binaries, sources, and documentation
• gradle-2.9-bin.zip: This contains binaries only

We can download any of the above depending on what we need. Also, this is an
OS-independent zip so the same zip can be extracted on Mac OS X, Windows, and
Linux. The next section makes the Gradle command available on the command line.
This section is dependent on the OS we use.

Installing on Mac OS X and Linux
Let's say we extracted the downloaded zip as ~/gradle-2.9/. Now, we just need
to add the following two lines at the end of .bashrc/, .bash_profile/, or .zshrc,
depending on the OS and the shell that we use:

export GRADLE_HOME=~/gradle-2.9
export PATH=$PATH:$GRADLE_HOME/bin

Restart the terminal or source the modified file to have the change take effect.

http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.gradle.org/downloads
http://www.gradle.org/downloads

Running Your First Gradle Task

[4]

Installing on Windows
Let's say we extracted the zip as C:\gradle-2.9, then perform the following steps:

1. Open the Start menu, right click on Computer and select Properties.
2. On Advanced system settings, select the Advanced tab, and then select

Environment Variables....

3. Click on New.
4. Create a GRADLE_HOME environment variable with the value C:\gradle-2.9.

Downloading the example code
You can download the example code files from your account at
http://www.packtpub.com for all the Packt Publishing books
you have purchased. If you purchased this book elsewhere, you
can visit http://www.packtpub.com/support and register to
have the files e-mailed directly to you.

http://www.packtpub.com
http://www.packtpub.com/support

Chapter 1

[5]

In future when we download the later version of Gradle, we would need
to change on this value to point to the correct folder.

5. Edit (or add if not already there) the PATH environment variable. At the end
of its value, append ;%GRADLE_HOME%\bin (add a semicolon if multiple path
entries exist).

Alternate methods of installing Gradle
Although the manual installation gives absolute control over the installation process,
various tasks such as downloading and extracting the right version, upgrading to
the latest versions, uninstalling, and editing environment variables quickly become
cumbersome and error-prone. That is why many people prefer package managers to
control the whole process.

Running Your First Gradle Task

[6]

Installing via OS-specific package managers
While installing manually, as mentioned in the previous section, is very easy, we can
make it super-easy by using a package manager.

Some Linux distributions like Ubuntu ship with their package manager, Mac OS X,
Windows don't have any package manager installed by default. However, luckily,
there are multiple package managers available for both platforms. We will see the
example of Homebrew on Mac and Chocolatey on Windows.

Mac OS X
Make sure we have Homebrew installed. If it is, installing Gradle is only a matter of
using the following command:

$ brew install gradle

More details on Homebrew can be found at http://brew.sh.

Linux (Ubuntu)
Using the built in package manager on Ubuntu, which is called Advanced Packaging
Tool (APT), we can install Gradle with the following command:

$ sudo apt-get install gradle

Windows
If we have Chocolatey installed, installing Gradle is just a command away:

c:\> cinst gradle

More details on Chocolatey can be found at https://chocolatey.
org.

Installing via SDKMAN
SDKMAN stands for the Software Development Kit Manager. In its own words,
the website describes it as: SDKMAN! is a tool for managing parallel versions of multiple
Software Development Kits on most Unix based systems.

http://brew.sh
https://chocolatey.org
https://chocolatey.org

Chapter 1

[7]

The advantage SDKMAN has over other package managers is that we can have
multiple Gradle versions installed on a system and select a different version for a
given project. If we have it installed, all we need to do is run following command:

$ sdk install gradle

SDKMAN can be installed from http://sdkman.io/.

Verifying the installation
In whichever way we choose to install Gradle, it's a good idea to verify that if it's
working before we move ahead. We can do this by simply checking for Gradle's
version on the command line:

$ gradle --version

--

Gradle 2.9

--

Build time: 2015-11-17 07:02:17 UTC

Build number: none

Revision: b463d7980c40d44c4657dc80025275b84a29e31f

Groovy: 2.4.4

Ant: Apache Ant(TM) version 1.9.3 compiled on December 23 2013

JVM: 1.8.0_25 (Oracle Corporation 25.25-b02)

OS: Mac OS X 10.10.5 x86_64

If we see output similar to the above, we have Gradle installed correctly on
our machine.

We can use -v instead --version to get the same result.

Setting JVM options
Although it's not required most of the time, but if in case we need to set some global
options for the JVM that Gradle will use, Gradle provides us a convenient way to do
that. We can set the GRADLE_OPTS environment variable with acceptable flags to tune
the JVM.

http://sdkman.io/

Running Your First Gradle Task

[8]

Gradle also honors the JAVA_OPTS environment variable. However, we need to
be careful when setting it, as this affects the setting for all the Java programs on a
machine. Setting that we want to keep common for all the Java apps should be done
via this variable and those that only need to be applied to Gradle should be set via
GRADLE_OPTS.

Some commonly used options are -Xms and -Xmx, which set the
minimum and maximum heap size of the JVM.

The Gradle command-line interface
Gradle, just like other build tools, is primarily run from a command line. That's
why it is worth spending some time to get familiar with its command-line interface.
Typically, a gradle command is issued from the root of a project directory with
some tasks to be executed. Let's say we are in the hello-gradle directory, which is
currently empty.

Gradle provides a very simple command-line interface (CLI), which takes the
following form:

gradle [options…] [tasks…]

As we can see, apart from the gradle command itself, everything else is optional.
The options tweak the execution of the Gradle whereas tasks, which we will see
in detail later, are the basic units of work. Options are common across all projects
and are specific to Gradle but tasks may vary depending on the project in which the
gradle command is being run.

There are some tasks that are available on all projects. One such task is help:

$ gradle help

:help

Welcome to Gradle 2.9.

To run a build, run gradle <task> ...

To see a list of available tasks, run gradle tasks

Chapter 1

[9]

To see a list of command-line options, run gradle --help

To see more detail about a task, run gradle help --task <task>

BUILD SUCCESSFUL

Total time: 0.639 secs

Gradle is helping us out by telling us how to find all the available tasks and list all
command-line options. Let's first check what other tasks are currently available on
our project. Remember we are still in the empty directory hello-gradle:

$ gradle tasks

:tasks

--

All tasks runnable from root project

--

Build Setup tasks

init - Initializes a new Gradle build. [incubating]

wrapper - Generates Gradle wrapper files. [incubating]

Help tasks

components - Displays the components produced by root project 'hello-
gradle'. [incubating]

dependencies - Displays all dependencies declared in root project 'hello-
gradle'.

dependencyInsight - Displays the insight into a specific dependency in
root project 'hello-gradle'.

help - Displays a help message.

model - Displays the configuration model of root project 'hello-gradle'.
[incubating]

projects - Displays the sub-projects of root project 'hello-gradle'.

properties - Displays the properties of root project 'hello-gradle'.

tasks - Displays the tasks runnable from root project 'hello-gradle'.

Running Your First Gradle Task

[10]

To see all tasks and more detail, run gradle tasks --all

To see more detail about a task, run gradle help --task <task>

BUILD SUCCESSFUL

Total time: 0.652 secs

This shows us some generic tasks that are available even without us adding any task
to our project. We can try running all these tasks and see the output. We will see
these tasks in details in the upcoming chapters.

The other useful command gradle help suggested us to check all the available
options with the --help option.

The help task is not the same as the --help option.

When we run the gradle --help command, we get the following output:

$ gradle --help

USAGE: gradle [option...] [task...]

-?, -h, --help Shows this help message.

-a, --no-rebuild Do not rebuild project dependencies.

-b, --build-file Specifies the build file.

…..

(The output is truncated for brevity.)

The option has a long form such as --help and may have a short from such as -h. We
have already used one option before, that is --version or -v, which prints information
about the Gradle version. The following are some commonly used options; there are
many more options, which can be seen using the gradle --help command:

Options Description
-b, --build-file This specifies a build file (default: build.gradle)
--continue This continues task execution even after a task failure
-D, --system-prop This sets the system property of the JVM

Chapter 1

[11]

Options Description
-d, --debug This prints debug level logs
--gui This starts Gradle GUI
-i, --info This prints info level logs
-P, --project-prop This adds a property to the project
-q, --quiet This logs only errors
-s, --stacktrace This prints stack traces for exceptions
-x, --exclude-task This excludes a specific task

The first Gradle build script
So we are now ready to get our feet wet and see our first Gradle script in action.
Let's create a file called build.gradle in the hello-gradle directory. Unless the
build file path is provided using the --build-file option, Gradle treats the current
directory as a project root and tries to find the build.gradle file there. If we have
used Ant or Maven earlier, we can relate this file with build.xml or pom.xml,
respectively.

Now, open the build.gradle file and let's declare a task by adding the
following line:

task helloWorld

We should be able to see this task on the command line as follows:

$ gradle tasks

...

Other tasks

helloWorld

...

Here, we have successfully created a task object called helloWorld. Tasks are first-
class objects in Gradle, which means they have properties and methods on them.
This gives us tremendous flexibility in terms of customizability and programmability
of build.

Running Your First Gradle Task

[12]

However, this task actually does not do anything yet. So let's add some meaningful
action to this task:

task helloWorld << {
 println "Hello, World!"
}

Now from the command line, we can execute this task by issuing the
following command:

$ gradle -q helloWorld

Hello, World!

Notice that we used the –q flag to reduce the verbosity in the output. When this task
is run, we see the output that our task generates but nothing from Gradle unless it's
an error.

Now, let's try to briefly understand the build.gradle file. The first line declares the
tasks and starts the body of a code block that will be executed at the end. The left
shift operator (<<) might feel oddly placed, but it is very important in this context.
We will see in the later chapters what it exactly means. The second line is a Groovy
statement that prints the given string to the console. Also, the third line ends the
code block.

Groovy's println "Hello, World!" is equivalent to System.out.
println("Hello, World!") in Java.

Task name abbreviation
While calling a gradle task from a command line, we can save a few keystrokes
by typing only the characters that are enough to uniquely identify the task name.
For example, the task helloWorld can be called using gradle hW. We can also use
helloW, hWorld, or even heWo. However, if we just call gradle h, then the help task
will be called.

This comes very handy when we need to frequently call long Gradle task names. For
example, a task named deployToProductionServer can be invoked just by calling
gradle dTPS, provided that this does not match any other task name abbreviation.

Chapter 1

[13]

Gradle Daemon
While we are talking about frequently calling Gradle, it is a good time to know about
a recommended technique to boost the performance of our builds. Gradle Daemon, a
process that keeps running in the background, can speed up the builds significantly.

For a given gradle command invocation, we can specify the --daemon flag to enable
the Daemon process. However, we should keep in mind that when we start the
daemon, only the subsequent builds will be faster, but not the current one.
For example:

$ gradle helloWorld --daemon

Starting a new Gradle Daemon for this build (subsequent builds will be
faster).

:helloWorld

Hello, World!

BUILD SUCCESSFUL

Total time: 2.899 secs

$ gradle helloWorld

:helloWorld

Hello, World!

BUILD SUCCESSFUL

Total time: 0.6 secs

In the preceding example, if we notice the time taken by two runs, the second one
completed much faster, thanks to the Gradle Daemon.

We can also prevent a specific build invocation from utilizing a Daemon process by
passing the --no-daemon flag.

There are various ways to enable or disable Gradle Daemon, which are documented
at https://docs.gradle.org/current/userguide/gradle_daemon.html

https://docs.gradle.org/current/userguide/gradle_daemon.html

Running Your First Gradle Task

[14]

Gradle Wrapper
A Gradle Wrapper consists of a gradlew shell script for Linux/Mac OS X, a
gradlew.bat batch script for Windows, and a few helper files. These files can be
generated by running a gradle wrapper task and should be checked into the version
control system (VCS) along with project sources. Instead of using the system-wide
gradle command, we can run the builds via the wrapper script.

Some of the advantages of running builds via a wrapper script are as follows:

1. We don’t need to download and install Gradle manually. The wrapper script
takes care of this.

2. It uses a specific version of Gradle that the project needs. This reduces the
risk of breaking a project’s build because of incompatible Gradle versions.
We can safely upgrade (or downgrade) the system-wide Gradle installation
without affecting our projects.

3. It transparently enforces the same Gradle version for our project across all
developers’ machines in the team.

4. This is extremely useful in Continuous Integration build environments, as we
do not need to install/update Gradle on the servers.

Generating wrapper files
The Gradle wrapper task is already available to all Gradle projects. To generate
the wrapper scripts and supporting files, just execute the following code from the
command line:

$ gradle wrapper

While generating wrapper, we can specify the exact Gradle version as follows:

$ gradle wrapper --gradle-version 2.9

In this example, we are specifying the Gradle version to be used is 2.9. After running
this command, we should check-in the generated files into VCS. We can customize
the wrapper task to use a configured Gradle version, produce wrapper scripts with
different names, change their locations, and so on.

Running a build via wrapper
For availing the benefits of a wrapper script, instead of using the gradle command,
we need to call the wrapper script based on our OS.

Chapter 1

[15]

On Mac OS X/Linux:

$./gradlew taskName

On Windows:

$ gradlew taskName

We can use the arguments and flags exactly in the same way as we pass to the
gradle command.

Summary
In this chapter, we started with a brief introduction to Gradle. Then, we looked at
manual installation and also installation via package managers. We also learned
about Gradle's command-line interface. Also, finally, we wrote our first Gradle
build script.

If you have followed the chapter until this point, you are all set to check out any
Gradle-based project on your machine and execute builds. Also, you are equipped
with the knowledge to write a very basic Gradle build script. Going forward, we will
look at building Java-based projects with Gradle.

Purchase the full book
Get 50% discount on the eBook format using coupon code GRADLE50

https://www.packtpub.com/web-development/gradle-essentials/?utm_source=gradle.org&utm_medium=referral&utm_campaign=GradleSampleBook
https://www.packtpub.com/web-development/gradle-essentials/?utm_source=gradle.org&utm_medium=referral&utm_campaign=GradleSampleBook
https://www.packtpub.com/web-development/gradle-essentials/?utm_source=gradle.org&utm_medium=referral&utm_campaign=GradleSampleBook

	Cover
	Copyright
	Credits
	About the Authors
	Acknowledgments
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Running Your First Gradle Task
	Installing Gradle
	Installing manually
	Installing on Mac OS X and Linux
	Installing on Windows

	Alternate methods of installing Gradle
	Installing via OS-specific package managers
	Installing via SDKMAN

	Verifying the installation
	Setting JVM options

	The Gradle command-line interface
	The first Gradle build script
	Task name abbreviation
	Gradle Daemon
	Gradle Wrapper
	Generating wrapper files
	Running a build via wrapper

	Summary

	Chapter 2: Building Java Projects
	Building a simple Java project
	Creating a build file
	Adding source files
	Building the project
	A brief introduction to plugins

	Unit testing
	Adding a unit test source
	Adding the JUnit to the classpath
	Running the test
	Viewing test reports
	Fitting tests in the workflow

	Bundling an application distributable
	Running the application with Gradle
	Building the distribution archive

	Generating IDE project files
	Summary

	Chapter 3: Building a Web Application
	Building a simple Java web project
	Creating source files
	Creating a build file
	Building the artifact
	Running the web application
	Plugins to the rescue

	References
	Project dependencies
	External libraries
	The dynamic version
	Transitive dependencies

	Dependency configurations
	Repositories

	Summary

	Chapter 4: Demystifying Build Scripts
	Groovy for Gradle build scripts
	Why Groovy?
	Groovy primer
	Running Groovy code
	Variables
	Data structures
	Methods
	Classes

	Another look at applying plugins

	Gradle – an object-oriented build tool
	Build phases
	Initialization
	Configuration
	Execution
	Life cycle callbacks

	Gradle project API
	Project methods
	Project properties
	Extra properties on a project

	Tasks
	Attaching actions to a task
	Task flow control
	dependsOn
	finalizedBy
	onlyIf
	mustRunAfter and shouldRunAfter

	Creating tasks dynamically
	Setting default tasks
	Task types
	Using task types
	Creating task types

	References
	Groovy
	Gradle API and DSL used in this chapter

	Summary

	Chapter 5: Multiprojects Build
	The multiproject directory layout
	The settings.gradle file
	Organizing build logic in multiproject builds
	Applying a build logic to all projects
	Applying build logic to subprojects
	Dependency on subprojects

	Summary

	Chapter 6: The Real-world Project with Gradle
	Migrating from an Ant-based project
	Importing an Ant file
	Using AntBuilder API
	Rewriting Ant tasks to Gradle tasks

	Migrating from a Maven project
	Publishing artifacts
	Continuous Integration
	Generating documentation
	Summary

	Chapter 7: Testing and Reporting with Gradle
	Testing with TestNG
	Integration testing
	Code coverage
	Code analysis reports
	Summary

	Chapter 8: Organizing Build Logic and Plugins
	Extracting build logic to buildSrc
	The first plugin
	Configuring plugins
	Summary

	Chapter 9: Polyglot Projects
	The polyglot application
	Building Groovy projects
	Building Scala projects
	Joint compilation
	References
	Summary

	Index
	Untitled-1.pdf
	_GoBack

	Untitled-1.pdf
	_GoBack

	Untitled-1.pdf
	_GoBack

