


Mastering Gradle

Master the technique of developing, migrating, 
and building automation using Gradle

Mainak Mitra

BIRMINGHAM - MUMBAI



Mastering Gradle

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval 
system, or transmitted in any form or by any means, without the prior written 
permission of the publisher, except in the case of brief quotations embedded in 
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy 
of the information presented. However, the information contained in this book is 
sold without warranty, either express or implied. Neither the author, nor Packt 
Publishing, and its dealers and distributors will be held liable for any damages 
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the 
companies and products mentioned in this book by the appropriate use of capitals. 
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: July 2015

Production reference: 1280715

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78398-136-6

www.packtpub.com



Credits

Author
Mainak Mitra

Reviewers
Alexander Barnes

Scott Battaglia

Michael Putters

Andreas Schmid

Commissioning Editor
Amarabha Banerjee

Acquisition Editor
Nadeem N. Bagban

Content Development Editor
Parita Khedekar

Technical Editor
Namrata Patil

Copy Editors
Mario Cecére

Kausambhi Majumdar

Angad Singh

Laxmi Subramanian

Project Coordinator
Milton Dsouza

Proofreader
Safi s Editing

Indexer
Rekha Nair

Graphics
Jason Monteiro

Production Coordinator
Aparna Bhagat

Cover Work
Aparna Bhagat



About the Author

Mainak Mitra is a software developer who has rich experience in enterprise 
software development and automation frameworks. He is an electrical engineer from 
Jadavpur University, Kolkata. He is currently working for an online gaming company. 
Prior to this, he worked for various product development companies, such as Yahoo 
Inc., CA Technologies. He can be contacted at mitramkm@gmail.com.

First, I would like to thank the Gradle team for creating such a 
robust build automation tool. This book would not exist without 
this open source tool.

I would also like to thank the editors at Packt Publishing, who 
inspired and helped me to write this book. The Packt Publishing 
team, especially Parita and Namrata, provided insightful feedback 
to help me.

Before this book reached you, it was reviewed by many people at 
different stages. Without their comments, feedback, and criticism, 
this book would not have been possible. I acknowledge the people 
involved here: Alexander Barnes, Scott Battaglia, Michael Putters, 
Andreas Schmid.

Special thanks goes to my friend Abhinandan for his contribution to 
this book and for compromising his weekends for me. He reviewed 
all the chapters in this book and guided me in writing most of the 
topics. Without his expertise and support, this book would not have 
been possible.



About the Reviewers

Alexander Barnes has been a professional software engineer for over 5 years 
after graduating summa from the Texas A&M class of '09 with a BS in computer 
engineering and a minor in mathematics. He started his career at Cisco Systems, 
working with a variety of Java web technologies and tools. At Cisco, he played 
a leading role in developing the RESTful User Data Services (UDS) for the 
CallManager product and helped develop and maintain the administration and 
user portals. He pioneered the transformation of his team's build system from Ant 
to Gradle for the numerous project tools and utilities maintained by the team and 
became a subject-matter expert on Git, Gradle, and Linux in particular.

Alex decided to move closer to his family, recently joining Novo Dia Group in 
Austin as a senior Java developer. He is an avid advocate of best software practices 
and the usage of the right tools for the job. Some of his favorite tools include Git, 
Gerrit, Jenkins, Sonar, Gradle, Java, and Linux. He strives to design and develop 
freely, refactor to consistent design patterns as appropriate, and focus on reducing 
mutable states. Alex occasionally blogs about technologies and other interests on his 
website at http://toastedbits.com/.

Alex enjoys pursuing other creative hobbies in his spare time; playing his guitar and 
listening to a lot of rock, metal, and electronic music. He also wishes to pick up piano 
and music production techniques to create his own electronic tracks in the future. He 
is also an enthusiast of craft beers and playing board games and poker with friends.

I would like to thank my friends and family for giving me their 
love and encouragement to achieve my dreams. Also, thanks to 
the Electronic Frontier Foundation, GNU, and Apache Software 
Foundation for making our software world a much more respectful 
community.



Scott Battaglia is a senior software development engineer for Audible Inc. 
(an Amazon.com, Inc. company), the leading provider of premium digital spoken 
audio information. He currently leads the shared Android platform team and 
coaches on a variety of topics, including open source, interviewing, and scrum. Prior 
to this, he was an identity management architect and senior application developer 
with Rutgers, the State University of New Jersey.

He has actively contributed to various open source projects, including Apereo 
Central Authentication Service and Inspektr, and has previously contributed to 
Spring Security, Apereo OpenRegistry, and Apereo uPortal. He has spoken at a 
variety of conferences, including Jasig, EDUCAUSE, and Spring Forward on topics 
such as CAS, Identity Management, Spring Security, and software development 
practices.

Michael Putters has been working with various technologies for the past 15 years, 
from low-level assembler projects to Angular websites, his main interests being 
compiler and graphics development. More recently, he's been involved with the 
Gradle project as it is the only build system capable of handling any type of project, 
Java-based applications, native C++ software, mobile applications on iOS and 
Android, and even JavaScript and TypeScript websites. Currently, he's acting 
as the CTO at a number of tech companies in Paris, France.



Andreas Schmid was born in 1985 and started working as a technology consultant 
in Munich in 2009 after an apprenticeship as an IT specialist and business informatics 
studies. His passion is creating software and solving diffi cult IT problems.

In his career, he has participated in Java enterprise projects, contributing to database 
migrations, expediting the automation of various topics, as well as introducing and 
coaching new software engineering techniques such as agile software development 
and test-driven development. It's been over 7 years since he started using it and the 
relies on continuous integration and delivery as much as possible.

Further, he believes in the advantages of open source software and likes to immerse 
himself into these tools to get the most out of them. This deep understanding also 
enables him to contribute by providing patches and fi xes in his spare time to further 
improve these tools.

While being a software engineer and doing things right, he also had the pleasure of 
being a product owner. In this area, the important question he had to answer was, 
"Do we do the right things?" So, he also gets his teeth into validated learning for 
shorter product development cycles.

He likes to be where state-of-the-art software engineering practices and reality collide.



www.PacktPub.com

Support fi les, eBooks, discount offers, and more
For support fi les and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF 
and ePub fi les available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy. 
Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign 
up for a range of free newsletters and receive exclusive discounts and offers on 
Packt books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital 
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print, and bookmark content
• On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access 
PacktLib today and view 9 entirely free books. Simply use your login credentials for 
immediate access.



[ i ]

Table of Contents
Preface vii
Chapter 1: Getting Started with Gradle 1

Understanding Build Automation System 2
Need for BAS 3

Gradle overview 4
Installation and quick start 5

Pre-requisites 5
Gradle for Windows 6
Gradle for Mac/Linux 7
The Gradle JVM option 7

Our fi rst script 7
Gradle command Line arguments 9
The Gradle GUI 13
Start up script 15
Build life cycle 17

Initialization 17
Confi guration 18
Execution 18

Cache management 18
Cache location 19
Change Cache location 19
Cache features 19

Reduce the traffi c 19
Dependency location 20
Version integration 20
Switching off remote checking 20
Version confl icts 20



Table of Contents

[ ii ]

Gradle with IDE 20
Installing the Gradle plugin in Eclipse 21
Working with the Gradle project in IDE 22

Summary 27
Chapter 2: Groovy Essentials for Gradle 29

Overview 29
Minimum code 30
Simpler I/O operations 30
Integration with Ant 30
Builder classes 30
Closure 31

Groovy script for Hello World 31
Data types 32

String 33
Dynamic typing in Groovy 34

Classes, beans, and methods 36
Control structures 38

The if-else condition 38
The switch statement 39
Loops 39

Collections 40
Set 40
List 41
Map 42
Range 43

Closure 44
Builder 48
Summary 49

Chapter 3: Managing Task 51
Build script basics 51
Task confi guration 55
Task execution 56
Task dependency 57
Task ordering 58
Task operations 61

Conditional execution 62
Build optimization 64
Task rules 66



Table of Contents

[ iii ]

Gradle's in-built tasks 68
The Copy Task 68
The Rename Task 68
The Zip task 68

Custom tasks 69
Using buildSrc 71
The standalone task 72

Summary 74
Chapter 4: Plugin Management 75

The script plugin 75
The binary plugin 77
Gradle's in-built plugins 77

Build and Test plugins 78
Code analysis plugins 78
IDE plugins 78

The Java plugin 79
Conventions 79
Confi guration 84

The custom plugin 86
The build fi le 87
The buildSrc directory 88
The Standalone project 90

Summary 95
Chapter 5: Dependency Management 97

Overview 97
Dependency confi gurations 98

Dependency types 98
Repositories 100
Repositories confi guration 101

Dependency resolution 103
Transitive dependency 103
Exclude transitiveness 104
Selective exclude 104
Version confl icts 105
Dynamic dependency 107

Customizing the dependency 107
Download fi le other than JAR 107
Dependency on fi les with classifi ers 108
Replacing transitive dependencies 108



Table of Contents

[ iv ]

Custom confi guration for dependency 108
Dependency reports 109

Dependency-specifi c details 112
Publishing artifacts 112

Default artifacts 113
Custom artifacts 114

Generate additional XML fi le along with your JAR fi le 114
Generate an additional ZIP fi le along with your JAR fi le 115

Custom confi guration 116
The maven-publish plugins 117

Publishing to the local-hosted repository 120
Custom POM 121

Summary 122
Chapter 6: Working with Gradle 123

The War plugin 123
The Scala plugin 126
Logging 131
File management 133

Reading fi les 133
Writing fi les 134
Creating fi les/directories 134
File operations 135
Filter fi les 136
Delete fi les and directories 137
FileTree 138

Property management 139
ext closure 139
gradle.properties 139
The command line 140
The Custom properties fi le 140

Multi-project build 142
The Multi-project structure 142
The Multi-project execution 144
Task execution 146
The Flat hierarchy 148
Interproject dependency 149
Confi guration-level dependency 149
Task-level dependency 151
Library dependency 152



Table of Contents

[ v ]

Partial builds 153
buildDependents 153
buildNeeded 154

Testing with Gradle 155
JUnit 155

Test confi guration 157
TestNG 162

Execution based on group 163
Execution based on the TestNG suite fi le 164

Summary 165
Chapter 7: Continuous Integration 167

Jenkins walk-through 167
Jenkins installation 168
Jenkins confi guration 169
Create job 171
Execute job 175

Checkstyle and PMD plugins 178
The Sonar Runner plugin 181
TeamCity walk-through 183
Summary 188

Chapter 8: Migration 189
Migration from Ant 189

Importing Ant fi le 190
Accessing properties 193
Update Ant tasks 194

Using AntBuilder API 195
Rewriting to Gradle 198

Confi guration 201
Migration from Maven 204

Build fi lename and project properties 205
Properties 205
Dependency management 206

Exclude transitive 207
Plugin declaration 207
Repository confi guration 208
Multi-module declaration 209
Default values 210
Gradle init Plugin 210

Summary 212



Table of Contents

[ vi ]

Chapter 9: Deployment 213
Role of Gradle in deployment 214
Docker overview 215
Installing Docker 216
Docker commands 217

Help command 217
Download image 218
The list of images 218
Creating a container 219
The container list 219
Start/stop container 220
Connecting to a container 220
Deleting a container 220
Removing an image 221
Copying fi les to the container 221
Container details 221
Updating DNS settings 223
Creating an image from a container 223

Running an application in Docker 224
Build, Deployment, and Test pipeline 228
Summary 234

Chapter 10: Building Android Applications with Gradle 235
Creating Android project using Android Studio 236
Building the Android project with Gradle 242

buildTypes 245
ProGuard settings 246
Build fl avors 247

Running the application on a device/emulator 249
Signing the release version 252

Summary 253
Index 255



[ vii ]

Preface
This book is a practical guide to learning enterprise build systems with Gradle. 
This book helps you to master the core concepts of the tool and to quickly apply 
the knowledge to real-life projects. Throughout the book, all the chapters are 
supported by suffi cient examples so that the reader can easily follow and absorb the 
concepts. The book is divided into 10 chapters. The fi rst six chapters are aimed at 
gaining knowledge about fundamental topics such as Task, Plugins, Dependency 
Management, various in-built plugins, and a lot more. The next few chapters cover 
diverse topics such as Continuous Integration, Migration, and Deployment, which 
enables readers to learn concepts that are very useful for agile software development. 
The last chapter of the book focuses on the Android build system with Gradle, which 
will be useful for mobile developers.

What this book covers
Chapter 1, Getting Started with Gradle, discusses briefl y about the build automation 
system, its needs, and how Gradle can help developers to automate the build and 
deployment process. Along with the Gradle installation, confi guration, and features, 
this chapter also talks about some important concepts such as the initialization script, 
the Gradle GUI interface, and the Gradle command-line options.

Chapter 2, Groovy Essentials for Gradle, talks about the fundamental concepts of 
Groovy programming language. This chapter also discusses the classes, beans, 
and collection frameworks. This chapter gives the reader a heads up on Groovy, 
which is required for Gradle.

Chapter 3, Managing Task, discusses Tasks in detail, which is the basic unit of action 
in Gradle. Developers learn about different fl avors of Tasks such as in-built tasks 
and custom tasks. This chapter also discusses task confi gurations, task ordering, 
and task dependencies.



Preface

[ viii ]

Chapter 4, Plugin Management, talks about one of the important building blocks of 
Gradle, plugins. The reader will learn to create simple plugins and custom plugins. 
Also, the user will be able to confi gure plugins as per his/her needs. This chapter 
also discusses one of the most usable plugins, the Java plugin, in detail. The user 
will learn about different conventions supported and how to customize the standard 
conventions as per the project's/organization's requirements.

Chapter 5, Dependency Management, discusses one of the other important features of 
Gradle, dependency management, in detail. It discusses the dependency resolution, 
dependency confi guration, and dependency customization. It also discusses 
repository management. It provides a deep insight of how the user can confi gure 
different external repositories, internal repositories, as well as use the local fi lesystem 
as a repository.

Chapter 6, Working with Gradle, discusses two additional plugins, War and Scala. It 
also discusses various topics such as property management, multi-project build, and 
the logging features. The user will learn about different I/O operations, as well as 
unit testing features using JUnit and TestNG in Gradle.

Chapter 7, Continuous Integration, talks about the continuous integration concepts 
and tools such as Jenkins and TeamCity, and their integration with Gradle. It also 
discusses different code quality plugin (Checkstyle, PMD, and Sonar) integrations 
with Gradle.

Chapter 8, Migration, fulfi lls one of the critical requirements of users who are already 
using other build tools such as Ant or Maven and want to migrate to Gradle. It talks 
about different migration strategies to convert the existing Ant and Maven scripts 
to Gradle.

Chapter 9, Deployment, explains the deployment aspect of software engineering. 
How smoothly the user can automate the deployment process, which saves lots of 
developer as well as operation team time and efforts. It discusses container-based 
deployment automation processes and tools; Docker. It gives details about Docker 
installation, useful Docker commands, and how to integrate Docker with continuous 
integration tools and Gradle to create a build-deploy-test workfl ow.

Chapter 10, Building Android Applications with Gradle, talks about mobile application 
development and deployment. Gradle is an offi cial build tool for Android. This 
chapter focuses on sample Android application development and different 
deployment strategies such as deploying the debug version, the release version, 
deployment on different confi gurations, and so on.



Preface

[ ix ]

What you need for this book
Your system must have the following software before executing the code mentioned 
in the book:

• Gradle 2.4
• Java 1.7 or above
• Jenkins
• TeamCity
• Ant 1.9.4
• Maven 3.2.2
• Docker 1.5.0
• Android 5.0

Who this book is for
If you are a Java developer with some experience in Gradle and want to become an 
expert, then this book is for you. Basic knowledge of Gradle is essential.

Conventions
In this book, you will fi nd a number of text styles that distinguish between different 
kinds of information. Here are some examples of these styles and an explanation of 
their meaning.

Code words in text, database table names, folder names, fi lenames, fi le extensions, 
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: 
"Gradle shares the same JVM options set by the environment variable JAVA_OPTS."

A block of code is set as follows:

def methodMissing(String name, args) {
  if (name.startsWith("plus") ) {
// write your own implementation
    return "plus method intercepted"
  }
  else {
    println "Method name does not start with plus"
    throw new MissingMethodException(name, this.class, args)
  }
}



Preface

[ x ]

When we wish to draw your attention to a particular part of a code block, the 
relevant lines or items are set in bold:

apply plugin: 'java'
version=1.0
configurations {
  customDep
}
repositories {
  mavenCentral()
}

Any command-line input or output is written as follows:

$ gradle –b build_customconf.gradle showCustomDep

:showCustomDep

New terms and important words are shown in bold. Words that you see on the 
screen, for example, in menus or dialog boxes, appear in the text like this: "Click 
on OK to add the repository."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about 
this book—what you liked or disliked. Reader feedback is important for us as it helps 
us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention 
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing 
or contributing to a book, see our author guide at www.packtpub.com/authors.



Preface

[ xi ]

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to 
help you to get the most from your purchase.

Downloading the example code
You can download the example code fi les from your account at http://www.
packtpub.com for all the Packt Publishing books you have purchased. If you 
purchased this book elsewhere, you can visit http://www.packtpub.com/support 
and register to have the fi les e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes 
do happen. If you fi nd a mistake in one of our books—maybe a mistake in the text or 
the code—we would be grateful if you could report this to us. By doing so, you can 
save other readers from frustration and help us improve subsequent versions of this 
book. If you fi nd any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form 
link, and entering the details of your errata. Once your errata are verifi ed, your 
submission will be accepted and the errata will be uploaded to our website or added 
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search fi eld. The required 
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all 
media. At Packt, we take the protection of our copyright and licenses very seriously. 
If you come across any illegal copies of our works in any form on the Internet, please 
provide us with the location address or website name immediately so that we can 
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected 
pirated material.

We appreciate your help in protecting our authors and our ability to bring you 
valuable content.



Preface

[ xii ]

Questions
If you have a problem with any aspect of this book, you can contact us at 
questions@packtpub.com, and we will do our best to address the problem.



[ 1 ]

Getting Started with Gradle
Consider a typical IT company development center scenario. Different teams are 
working together on one enterprise project with many components. Teams are 
working on server-side technologies, frontend technologies, the messaging layer, 
mobile development and there may be a separate team responsible for Quality 
Assurance. Every team is working as per their schedule, developing their own 
component(s), unit testing and committing code, and this cycle is repeated in multiple 
iterations. So far, everybody is happy as they are able to meet the deadlines as per the 
software release dates. Then comes the integration phase, when teams have to build 
the complete project and deploy the software (which could be WAR, JAR, or any 
service) to the integration/staging environment. And then the nightmare starts.

Although every team has successfully followed many best practices of software 
engineering such as committing code on a daily basis, unit testing of code and 
verifying the working software on a developer's test environment, but in the 
integration or staging environment the situation has suddenly changed. The 
team is stuck with confi guration and interoperation issues, localization issues, 
environmental issues, and so on.

This might be a very common scenario for any project and the situation will become 
worse if they are not using any automated solution for the build and deployment 
process. Hence the need for an automated process or we can call a Build Automation 
System (BAS), which automates the manual task of building the project seamlessly 
and delivers the software in a repeatable, reliable, and portable fashion. BAS  doesn't 
claim that there will be absolutely no issues or errors, but with BAS, the software can 
be managed in a better way, minimizing the probability of repeating the same error 
again and again.

Gradle is one of the advanced build automation tools available in the market. In the 
next 10 chapters, we will explore how to mitigate these problems with Gradle and 
with other related technologies. However, before we start learning Gradle, we need 
to understand what a BAS is and why we need it.



Getting Started with Gradle

[ 2 ]

Understanding Build Automation System
The most common processes in building any software include compiling the source 
fi les, packaging the compiled output to a compressed format (ZIP, JAR or any 
other format), and adding the required resource fi les and confi guration fi les to the 
packaging. Along with this, it may also include some other activities such as running 
static code analysis on the source code to provide feedback on the design and coding 
patterns, and another important area is Quality Assurance, which involves unit 
testing, integration testing, regression testing, and so on.

A BAS is part of the  software life cycle, which automates the build and deployment 
phases of the software. The fi rst phase is building the software, which is the 
process of creating the binaries or executables. The second phase is the deployment 
phase, wherein we need to install the software at a particular location. This phase 
also includes various other activities such as unpacking the bundle, localization 
of the software, confi guring the software as per the environment and setting the 
environment-specifi c properties required to execute the software. The next important 
step is functional testing to check the behavior of the software. Once everything is 
fi ne, it makes a happy and smiley ending for you.

So, as a developer, writing the code and test cases is just one of the major tasks in 
Software Development Life Cycle (SDLC). Build  and deployment is also considered 
as another important phase in any software life cycle. If it is not managed properly, 
it could lead to major downtime and client dissatisfaction.

Build automation allows us to automate the manual steps in the build process. It also 
helps to eliminate the redundant tasks, mitigates the risks of manual intervention, 
keeps the history of the builds, and saves the cost and time spent in the manual 
process. The goal here is to create reproducible assets every time you run the build 
script, which will not be the case, if you manually execute the steps every time.

Many developers relate the build  automation with Continuous Integration (CI). Do 
not get confused. The CI allows executing the build process, performing deployment 
activities, and many more activities. It helps to create a workfl ow for build and 
deployment automation. It also helps to schedule the builds and provides on-demand 
execution of builds. The schedule could be once in every hour, once in four hours, 
nightly builds or on every user commit. Some of the well known CI tools are Jenkins, 
TeamCity, Bamboo, Hudson, Cruise Control, and so on, which are totally different 
from Build tools, such as Ant, Maven, and Gradle.



Chapter 1

[ 3 ]

Need for BAS
Imagine that all the preceding mentioned steps  in building a software need to be 
done manually, and every developer has to perform steps on different machines. 
Now you can realize the amount of effort wasted in fi guring out problems with build 
issues rather than focusing on the actual business requirements. That's one of the 
reasons why we need a BAS. Following are some of the major activities, which we 
automate for the build  system:

• Translating the source code into binaries
• Packaging the binaries with configuration files to create deployable artifacts
• Executing the test cases
• Publishing the artifacts to a common repository
• Deploying the artifacts to different environments (Development, QA, 

and Production)
• Incremental builds
• Status reports that summarize the current state of the build

Another reason to have  a BAS is to reduce the operational complexities. If a new 
member joins the team and he has to perform the manual build of the software, it 
could be a nightmare for him, if there is no automation. Rather than concentrating on 
the business requirement, most of his time will be wasted on how to compile it, how 
to run unit tests, how to execute integration tests, and so on.

Actually, what he needs to know is where to commit the source code, where to put 
the resources, and what commands to execute to perform the build process. The 
build process should automatically perform all the tasks of compiling, packaging, 
running tests, uploading asserts and so on.

The more automated the build and deployment process, the faster you will get 
the deliverables to the client. It also helps with business continuity. In case of any 
system crash or network failure, you can rebuild and deploy the software on back 
up infrastructure in much less time.



Getting Started with Gradle

[ 4 ]

Some developers believe that project automation is a waste of time and why should 
they put in extra effort as their IDE performs this job. They can build the JAR, WAR, 
or any other deliverable unit with the help of IDE and deploy the same. Since they 
can build, and test it quickly, it works very well on their local system. The problem 
starts when integration happens. Thus, an automated system is required to avoid any 
manual intervention (unless it is the only option left), and to make builds portable, 
predictable and effi cient.

Gradle overview
Before getting into the details of Gradle, we need to understand some of the 
terminologies related to the build system.

There are two types of build tools, namely imperative build tools and declarative 
build tools. An imperative build tool tells the  system what to do and how to do it. In 
other words, it provides a set of action statements or commands, which the system 
executes in the same order and performs those actions. You  can take Ant as an 
example of the  imperative build system.

Whereas, a declarative build tool instructs the system, telling it what you would 
like to achieve, and system will fi gure out how to interpret it. With a declarative 
approach, the user only needs to determine the what, not the how. This is one of the key 
innovations Maven brought to the build world, after Ant achieved some popularity, 
where we don't need to write each and every step of an action, and end up creating a 
very large and verbose build script. With Maven we need to write some confi guration 
parameters for the build and the build system itself decides how to interpret it. 
Internally, the declarative layer is based on a powerful imperative layer, which can 
be accessed directly as required. Ant and Maven are very good and reliable build 
systems. They are innovative in all the areas for which they were designed and built. 
Each of them has introduced key innovations into the build space.

Gradle combines the good parts of both tools and provides additional features and 
uses Groovy as a Domain Specifi c Language (DSL). It  has power and fl exibility of 
Ant tool with Maven features such as build life cycle and ease of use.

Gradle is a general purpose, declarative build tool. It is general purpose because it 
can be used to build pretty much anything you care to implement in the build script. 
It is declarative, since you don't want to see lots of code in the build fi le, which is not 
readable and less maintainable. So, while Gradle provides the idea of conventions 
and a simple and declarative build, it also makes the tool adaptable and developers 
the ability to extend. It also provides an easy way to customize the default behavior 
and different hooks to add any third-party features.



Chapter 1

[ 5 ]

Primarily, Gradle is a  JVM-language build tool, but it also supports C, C++, Android, 
and so on. You will fi nd more information about this at https://docs.gradle.org/
current/userguide/nativeBinaries.html.

It provides automation for the different phases required in a Java project, such as 
compile, package, execute test cases, and so on. It has grouped its similar automation 
tasks into plugins. When you import any plugin to a Gradle script fi le, they always 
come with a set of predefi ned tasks. To get started with Gradle, you need to have 
basic knowledge of Java. It uses Groovy as its scripting language, which is another 
JVM language. We will discuss Groovy in the next chapter. As the build script is 
written in Groovy, it tends to be much shorter, expressive, and clearer than those 
written in Ant or Maven. The amount of boilerplate code is much less in Gradle 
with use of Groovy DSL. It also leverages Maven conventions for familiarity, while 
making it easy to customize to the needs of your project. Developers can add new 
functionality or extend the existing features at any time. They can  override the 
existing tasks or plugins to provide the new functionality.

Installation and quick start
Gradle installation is  quite simple. You can download the Gradle distribution from 
the Gradle home page at https://www.gradle.org/downloads, which is available 
in different formats.

Pre-requisites
Gradle requires a Java JDK or JRE to be installed, needing version 6 or higher 
(to check the Java version on your machine, use java -version). Some of the 
features might not work with JRE, so it is  recommended to have JDK installed. 
Also, Gradle ships with its own Groovy library; therefore, Groovy does not need 
to be installed. Any existing Groovy installation is ignored by Gradle.

Gradle is available in three formats:

• gradle-[version]-all.zip: This contains the  source code, the binaries, 
and the documentation

• gradle-[version]-bin.zip: This contains  the binaries only
• gradle-[version]-src.zip: This  contains the source code only, in case you 

want to extend the Gradle features



Getting Started with Gradle

[ 6 ]

Alternatively, you can just download gradle-[version]-bin.zip fi le.

Once downloaded, you need to unpack the zip fi le and confi gure it as per your 
operating system.

Gradle for Windows
Following are  the steps for installing Gradle on Windows:

1. Unpack the  Gradle distribution on the hard drive.
2. Add Gradle's installed path (for example, c:\gradle-2.4) to the 

GRADLE_HOME variable. Note that this location should be the parent 
directory of the bin or the lib folder.

3. Add the GRADLE_HOME/bin to the PATH variable.

When you are ready to go ahead  with Gradle, verify your installation by running the 
gradle command with the --version or -v command-line parameter.

> gradle –version

------------------------------------------------------------

Gradle 2.4

------------------------------------------------------------

 

Build time:   2015-05-05 08:09:24 UTC

Build number: none

Revision:     5c9c3bc20ca1c281ac7972643f1e2d190f2c943c

 

Groovy:       2.3.10

Ant:          Apache Ant(TM) version 1.9.4 compiled on April 29 2014

JVM:          1.7.0_79 (Oracle Corporation 24.79-b02)

OS:           Windows 8.1 6.3 amd64



Chapter 1

[ 7 ]

Gradle for Mac/Linux
Following are  the steps to install Gradle on the Mac/Linux operating system.

1. Unpack the  Gradle distribution.
2. Add the following two lines in your initialization script (~/.profile).
3. Export GRADLE_HOME = <Gradle_Installation_Dir>
4. Export PATH=$PATH:$GRADLE_HOME/bin

Reload the profi le by executing source ~/.profile and execute the 
gradle –version command. You will be able to see a similar output as 
mentioned in the previous section.

The Gradle JVM option
Gradle shares the  same JVM options set by the environment variable JAVA_OPTS. 
If you don't want to use this setting and want to pass arguments specifi cally to the 
Gradle runtime, you can use the environment variable GRADLE_OPTS.

Suppose if JAVA_OPTS=512MB in your system and you want to increase the default 
maximum heap size to 1024MB for Gradle application. You can set it like this:

GRADLE_OPTS="-Xmx1024m"

We can apply this setting in the project-specifi c build fi le. Alternatively, we can also 
apply this setting  to all of the Gradle build by adding the variable to the Gradle 
startup script (this will be discussed later in this chapter).

Our fi rst script
In the last section, we learned how to install Gradle. Now it's time create our very 
fi rst Gradle script. This  script will print Hello Gradle- This is your first 
script on the console. Just open a text editor, type in the following three lines, 
and save the fi le as build.gradle.

task helloGradle << {
      println 'Hello Gradle- This is your first script'
}



Getting Started with Gradle

[ 8 ]

Then execute the gradle helloGradle command as follows:

$ gradle helloGradle

:helloGradle

Hello Gradle- This is your first script

BUILD SUCCESSFUL

Total time: 4.808 secs

So, what have we done here?

• We have a created a Gradle build script file called build.gradle. This is 
the default name given to a build file. You can give any name to the build 
file. However, to execute the script, you must use the -b option with your 
filename with the gradle command. Otherwise,the build will fail with the 
Task '%TASK_NAME%' not found in root project '%PROJECT_NAME'."
gradle [-b <file name>] [task1 task2 ….. taskn] error.

• Try the gradle -b <buildfile_name> helloGradle command and you 
should get the same output.

• With the gradle command, we have executed a task called helloGradle, 
which prints a line in the console. So, the parameter we passed to the gradle 
command is the task name. You can execute one to any number of tasks with 
the Gradle command and these tasks will be executed in the same order as 
they appear in the command line.

There is a way to defi ne the default task using the 
defaultTasks keyword, which will be executed by default, 
if user does not mention any specifi c task to execute on the 
build fi le. We'll discuss this more in Chapter 3, Managing Task.

The Gradle command initializes the script, reads all tasks mentioned on the 
command-line, and executes tasks. Moreover, if any task has multiple dependencies, 
then dependent tasks are executed in alphabetical order unless those tasks 
themselves  enforce the order. You can fi nd more about task ordering in Chapter 3, 
Managing Task.

Remember that each Gradle build consists of three components: projects, tasks, and 
properties. Each build has at least one project and one or more tasks. The name of the 
project is the parent directory name in which the build fi le exists.



Chapter 1

[ 9 ]

Gradle command Line arguments
Now that you have created the fi rst working script, it is time to explore different 
command-line  options supported by Gradle.

You have already seen the usage of -b option to specify a build script. We'll start with 
--help or -h or -? to list all the options available with the Gradle command line.

$ gradle -h

USAGE: gradle [option...] [task...]

-?, -h, --help        Shows this help message.

-a, --no-rebuild      Do not rebuild project dependencies.

-b, --build-file      Specifies the build file.

-c, --settings-file   Specifies the settings file.

--configure-on-demand   Only relevant projects are configured in this 
build run. This means faster build for large multi-project builds. 
[incubating]

--continue            Continues task execution after a task failure.

In the preceding output, -h or --help displays many more options. We have 
truncated the output.

You can execute the command on your systems and check all the options. Most of 
these are self-explanatory. We will discuss the usage of some of the most useful 
options in this section.

Now we'll add two more tasks, failedTask and test to the build.gradle script 
and save the fi le as sample_build.gradle. The task named failedTask is expected 
to always fail due to assertion failure and the test task is dependent on the 
previously created task helloGradle. A task can succeed (executing all statements 
in the task without any exception) or it can fail (due to any exception or error in any 
line of code mentioned in the task) thus stopping the execution of the script.

task failedTask << {
      assert 1==2
}

task test(dependsOn: helloGradle ) << {
      println 'Test case executed'
}



Getting Started with Gradle

[ 10 ]

On executing the gradle -b sample_build.gradle failedTask test command, 
we observe that the test task is never executed. As Gradle executes tasks 
sequentially as they appear on the command-line, if a task fails to execute, 
all the remaining tasks will be ignored.

$ gradle -b sample_build.gradle failedTask test

:failedTask FAILED

FAILURE: Build failed with an exception.

…

BUILD FAILED

Total time: 6.197 secs

By default, Gradle stops  the build process if any task fails to execute. This feature 
helps to get a quick feedback on the build process. If you do not want to stop 
execution of the build irrespective of any task failure and you want to continue with 
other tasks, then it can be done by using the --continue command-line option. This 
feature could be useful when we want to build a multimodule project, where some of 
the modules might fail due to compilation error or test failure. With the –continue 
option, we will get a complete status of all the modules.

$ gradle -b sample_build.gradle failedTask test --continue

:failedTask FAILED

:helloGradle

Hello Gradle- This is your first script

:test

Test case executed

FAILURE: Build failed with an exception.

As you can see in the preceding output, failedTask failed to execute. So the build 
is marked as FAILURE. However, this time the test task executed successfully. Also 
observe that the helloGradle task is executed before the test task. This is because 
we have defi ned the test task to be dependent on the   helloGradle task. This is one 
of the ways you can create task dependencies. For now, don't get confused with task 
dependency. We will discuss the topic in detail in chapter3, Managing Task.



Chapter 1

[ 11 ]

Now, what happens if the helloGradle task fails? Just add a line assert 1==2 
into the helloGradle task. The assert statement forces the task to fail. When you 
look at the following output, you will fi nd that the test tasks is not executed as the 
dependent task failed:

$ gradle -b sample_build.gradle failedTask test --continue

:failedTask FAILED

:helloGradle

Hello Gradle- This is your first script

:helloGradle FAILED

FAILURE: Build completed with 2 failures.

In the preceding scenario, the test task is dependent on the helloGradle task. This 
means that, every time we execute the test task, the helloGradle task will be 
executed by default. In case you  want to avoid the execution of the helloGradle 
task, you can use the -x or --exclude-task option.

$ gradle -b sample_build.gradle failedTask --continue test -x 
helloGradle

:failedTask FAILED

:test

Test case executed

Another useful option is --dry-run or -m, which runs the build but does not execute 
the tasks. It is useful if you want to know the task execution order or you want to 
validate the script.

$ gradle --dry-run -b sample_build.gradle failedTask test 
--continue

:failedTask SKIPPED

:helloGradle SKIPPED

:test SKIPPED

BUILD SUCCESSFUL

Total time: 4.047 secs

--dry-run executes all the statements which are not part of 
any tasks and are defi ned outside of a task block. To verify 
this, add a println statement anywhere outside a task 
block defi nition and observe the result.



Getting Started with Gradle

[ 12 ]

So far, you must have noticed that each output displays extra information apart from 
the task output and error messages. Try the command-line option -q or --quiet to 
display only the task output:

$ gradle -q -b sample_build.gradle failedTask --continue test

Hello Gradle- This is your first script

Test case executed

The options --debug (-d), --info (-i), --full-stacktrace (-S), and --stacktrace 
(-s) display the output with different log levels and stack traces. --debug is the 
most detailed log level. --full-stacktrace and --stacktrace show stack traces if 
the build fails with an exception. Try the previously executed command with these 
command-line options and observe the output:

$ gradle -d -b sample_build.gradle failedTask --continue test

Now we will explore the --daemon, --stop, and --no-daemon options. On my 
machine, it took around 3.6 seconds to execute the preceding script. For this 
simple script, most of the execution time was spent in the initialization of Gradle. 
When we execute a Gradle command, a new Java Virtual Machine is started, then 
Gradle-specifi c classes and libraries are loaded,  and fi nally the actual build steps are 
executed. Initialization and execution of Gradle can be improved using the --daemon 
option. This is very useful if you are working in a test-driven development where you 
need to execute unit tests frequently or you need to run a particular task repeatedly.

To start a daemon, you can use the --daemon option. The daemon process 
automatically expires after 3 hours of idle time. To check whether the daemon is 
running on the system, use the ps command in the UNIX environment, or the Process 
explorer in Windows systems. Once you have started the daemon process, again 
execute the same Gradle task. You will fi nd an improvement in the execution time.

Alternatively, you can use the gradle.properties fi le to set the system property 
org.gradle.daemon to enable the daemon. In this scenario, you don't need to specify 
the --daemon option when executing the tasks. To try it out, create a fi le called 
gradle.properties in the same directory where you created the sample_build.
gradle fi le and add this line org.gradle.daemon=true. Now, run the gradle 
command and check whether the daemon process is running. The org.gradle.
daemo is a property that we have set to confi gure the Gradle build environment. We'll 
discuss more on properties and system variables in Chapter 6, Working with Gradle.



Chapter 1

[ 13 ]

To stop the daemon process, use the gradle --stop option. Sometimes, you may 
not want to execute Gradle tasks with the daemon process. Use the --no-daemon 
option with the task to ignore any running daemons.

$ gradle -b sample_build.gradle failedtask --continue test 

--daemon

 

$ ps -ef | grep gradle

root   25395  2596 46 18:57 pts/1  00:00:04 

/usr/local/java/jdk1.7.0_71/bin/java ….. 

org.gradle.launcher.daemon.bootstrap.GradleDaemon 2.4 

/home/root/.gradle/daemon 10800000 93dc0fe2-4bc1-4429-a8e3-

f10b8a7291eb -XX:MaxPermSize=256m -XX:+HeapDumpOnOutOfMemoryError -

Xmx1024m -Dfile.encoding=UTF-8 -Duser.country=US -Duser.language=en -

Duser.variant

 

$ gradle --stop

Stopping daemon(s).

Gradle daemon stopped.

Although the Gradle daemon is recommended for the development environment, 
it might get corrupted occasionally. When Gradle executes user build scripts from 
multiple sources (for example, in the Continuous Integration environment), it might 
exhaust the daemon process and may cause memory leakage if resources are not 
handled properly. Therefore, it is recommended not to enable the daemon for staging 
or continuous integration  environment. Apart from the command-line, Gradle 
can be executed in the Graphical User Interface (GUI) as well. In the next section, 
we'll discuss the graphical user interface supported by Gradle. The other important 
command-line options such as –D or --system-prop, -P or --project-prop will be 
discussed in Chapter 6, Working with Gradle, when we explore more on building Java 
applications with Gradle.

The Gradle GUI
Apart from the  command-line arguments and tools, Gradle provides a graphical user 
interface. It can be launched with the help of the following command-line option:
$ gradle --gui



Getting Started with Gradle

[ 14 ]

It launches a  graphical user interface (GUI), which can be used to execute Gradle 
tasks directly from the GUI.

Figure 1.1

It contains four tabs, which are explained as follows:

• Task Tree: The directory, under which you executed this command, is 
considered as the parent project  directory. If the build.gradle file is present 
under this directory, task tree will list out all the tasks available in the build.
gradle file. If the build.gradle file is not in this directory, it will list out 
only the default tasks. You can execute any task by double-clicking on the 
task name.
Figure 1.1 displays failedTask, helloGradle and test tasks that we 
developed earlier along with the default Gradle tasks.



Chapter 1

[ 15 ]

• Favorites: This works like your browser favorites, where you can save 
frequently used commands. Additionally, it provides an alias feature. In case 
you want to execute multiple  tasks on the command line, you can add them 
here and give it a simple display name. For example, you can click on 
the plus sign and add the following tasks in the command-line textbox: 
clean build.
Add init in the display name area. You will see that init appears in the 
Favorites area. Next  time, just click on init to execute clean build tasks.

• Command line: This works like the console. Here you can execute single or 
multiple inline  commands. It will execute the command and will display the 
result in the lower window.

• Setup: Even if you  started the GUI from a specific project directory, you can 
change the directory using this tab. It allows you to change your current 
directory for executing commands. Along with that, it helps to change some 
general settings such as Log level, Stack Trace output, and so on. It also allows 
you to execute other Gradle versions through the custom Gradle Executor.

Start up script
Consider this scenario, for each of your Gradle projects you have a dependency on 
a local in-house jar fi les. Additionally, you want to set some common environment 
variables for each of your Gradle projects (such as GRADLE_OPTS).

A simple solution is to  add the jar fi le in the dependency closure. An alternate 
solution could be to create one common build fi le and include this common fi le 
in each of the build fi les.

The simplest solution Gradle provides for these kinds of problems by introducing 
the initialization script.

Initialization scripts are no special fi les, but a Gradle script with the .gradle extension. 
However, this will execute every time before any of your build fi les execute.

There can be more than one initialization script.



Getting Started with Gradle

[ 16 ]

Some of the uses  of the initialization script are as follows:

• Downloading some common jars for each of your projects
• Performing common environment configuration related to system details 

and/or user details.
• Registering listeners and loggers.

So, how does Gradle fi nd these initialization script(s)? There are multiple ways to 
defi ne the initialization script which are as follows:

• All the files with .gradle extension under <USER_HOME>/.gradle/init.d 
directory are treated as initialization scripts. Gradle will execute all the 
.gradle files under this directory  before the execution of any Gradle 
build script.

• Files named init.gradle under <USER_HOME>/.gradle/ are treated as an 
initialization script.

• All the files  with the .gradle extension under <GRADLE_HOME>/init.d/ 
directory.

• You can even specify any Gradle file as the initialization script with -I 
<file name> or --init-script <file name>.

Even if multiple fi les are found at the location mentioned earlier, 
Gradle will execute all the fi les as initialization script before 
executing any project build script.

Following is a sample init script.

println "Hello from init script"
projectsLoaded {
  rootProject.allprojects {
    buildscript {
      repositories {
        maven {
          url "http://central.maven.org/maven2/"
        }
      }
      dependencies {
        classpath group: 'javax.mail', name: 'javax.mail-api', 
          version: '1.4.5'
      }
    }
  }
}



Chapter 1

[ 17 ]

Copy and paste the preceding code and save it as init.gradle fi le under any of the 
preceding mentioned paths. The println statement is intentionally added in this 
fi le to help you understand the execution cycle of the init script. Whenever you 
execute any Gradle script from a directory, you will see Hello from init script. 
Apart from printing Hello from init script, this script also downloads javax.
mail-api-1.4.5.jar in the Gradle cache when the script is executed for the fi rst 
time. It will not download this library again, unless there is a change in the fi le in the 
repository. If you don't understand what a cache is, don't worry. You will learn more 
about cache management in the later section of this chapter. Remember, sometimes 
defi ning too many confi gurations in the init script could be problematic. Specifi cally, 
debugging could be diffi cult because the projects are no longer self-contained.

Build life cycle
Gradle build has a life cycle, which consists of three phases: initialization, 
confi guration, and execution. Understanding the build life cycle and the execution 
phases is crucial for Gradle developers. Gradle build is primarily a collection of 
tasks and a user can  defi ne the dependency between the tasks. So, even if two tasks 
depend on the same task, for example, Task C and Task B both depend on Task A, 
Gradle makes sure that Task A will execute only once throughout the execution of 
the build script.

Before executing any task, Gradle  prepares a Directed Acyclic Graph (DAG) of 
all tasks for the build. It is directed because a task directly depends on another 
task. It is acyclic because, if Task A depends on Task B and if you make Task B 
depend on Task A, it will result in an error, as there can't be cyclic dependency 
between two tasks. Before executing the build script, Gradle confi gures the task 
dependency graph.

Let's quickly discuss the three build phases.

Initialization
User can create a build script for a single project as well as for a Multi-project build. 
During the initialization phase, Gradle determines which projects  are going to take 
part in the build process, and creates a Project instance for each of these projects.



Getting Started with Gradle

[ 18 ]

Confi guration
This phase confi gures the project object. All the build scripts (in case the user is 
executing a multiproject build), which are part of the build process are  executed 
without executing any task. This means whatever statements you have written 
outside of the task in the confi guration block would be executed in the confi guration 
phase. No tasks would be executed here; only the directed acyclic graph would be 
created for all tasks.

Execution
In this phase, Gradle executes  all tasks as per the order given in the command 
line. However, if any dependencies exist between tasks, those relationships will be 
honored fi rst before the command-line ordering.

Cache management
The main focus of any build tool is to not only automate the build and deployment 
processes, but also how to manage the cache effectively. No software works in 
isolation. Each software depends on some third-party libraries and/or in-house 
libraries.

Any good build tool  should automatically take care of software dependencies. 
It should be able to download the dependencies automatically and maintain the 
versioning. When Ant was released, this feature was not available and developers 
need to manually download the dependencies and need to maintain their versioning 
on its own. Though it was later resolved by extending Ant with Ivy.

Gradle automatically downloads all dependencies given in the build fi le. It 
determines all the libraries needed for the project, downloads from the repositories, 
and stores them in its local cache. Next time when you run the build, it doesn't need 
to download those dependencies again (unless required) as it can reuse the libraries 
from the cache. It also downloads all the transitive dependencies.

Downloading the example code
You can download the example code fi les from your account at 
http://www.packtpub.com for all the Packt Publishing books you 
have purchased. If you purchased this book elsewhere, you can visit 
http://www.packtpub.com/support and register to have the fi les 
e-mailed directly to you.



Chapter 1

[ 19 ]

Cache location
The fi rst question arises regarding cache, in which location Gradle maintains 
its cache. Gradle uses <USER_HOME>/.gradle/caches as the default directory to 
store its local cache. It might contain more than one version directory if a developer 
has used multiple versions of Gradle to build the software. The actual cache is 
divided into two parts. All the jars that are downloaded from the  repositories can 
be found under modules-2/files-2.1. Additionally, you will also fi nd some 
binary fi les that will store the metadata about the downloaded binaries. If you 
look inside the modules-2/files-2.1 directory, it has the path in the format 
group/name/version/checksum, which contains the actual binary. You can fi nd out 
more about dependency management in detail in Chapter 5, Dependency Management.

Change Cache location
If you want to change  the cache location to some other directory, other than 
default location, you need to set the following environment variables. You can set 
this variable in Windows as the environment variable and in the Unix/Linux in 
.profile fi le:

GRADLE_USER_HOME=<User defined location>

Cache features
Now, let's discuss some  of the important features of the Gradle cache.

Reduce the traffi c
One of the main features of Gradle cache management is to reduce the network 
traffi c. When you build the application for the fi rst time, Gradle downloads all the 
dependencies into a cache, so that next time onwards it can directly fetch it from 
the cache.

In case multiple repositories are confi gured in the build script and a JAR is found in 
the fi rst repository, then Gradle  won't search other repositories for the same JAR fi le. 
In another situation, if the JAR was not found in the fi rst repository but was fetched 
from the second repository, then Gradle will store metadata information about the 
fi rst repository, so that next time onwards the fi rst repository won't be searched for 
the missing JAR, to save time and network traffi c.



Getting Started with Gradle

[ 20 ]

Dependency location
Whenever Gradle downloads dependencies from the repositories, it also stores the 
repository location in its metadata. It helps to detect the changes in case the binaries 
are removed from the  repositories or their structure is changed.

Version integration
If a developer updates the Gradle version on his machine, and he has already 
downloaded libraries in an older  cache, then it is reused. Gradle also provides tight 
integration with Maven's local repository. Gradle fi gures out whether an artifact 
has changed in the remote repository by comparing its checksum with the local 
cache. All those artifacts whose checksum matches are not downloaded. Apart from 
checksum, Gradle will consider an additional parameter to compare between the 
remote and local artifacts; Gradle uses the value of the HTTP header parameter 
content-length or the last modifi ed date.

Switching off remote checking
With the --offline command-line option, a developer can ask Gradle to only look 
at the local cache, not in the  remote cache. This could be useful if the user is working 
without any network connectivity. If Gradle can't fi nd the JAR in the local cache, the 
build will fail.

Version confl icts
If a developer has not  mentioned any specifi c version of dependency and there are 
multiple versions available for the download, Gradle, by default, always downloads 
the latest version of the artifact.

Gradle with IDE
So far, in this chapter, we have worked on creating some basic Gradle scripts. We 
will conclude this chapter by creating a Java application with Gradle. To create a Java 
application, we'll be using Eclipse IDE with the Gradle plugin.

With Integrated Development Environment (IDE), application development 
becomes much easier. In this  section, we will explore how to install the Gradle plugin 
in Eclipse, create a simple Java application, explore Eclipse plugin tasks, and execute 
Gradle tasks from Eclipse.



Chapter 1

[ 21 ]

Apart from Eclipse, another  popular IDE is JetBrains IntelliJ IDEA. Gradle also 
supports IDEA plugin, which is very similar to the Eclipse plugin. However, in 
this book, we will focus only on the Eclipse plugin since it is freely available and 
is open source.

Installing the Gradle plugin in Eclipse
The Eclipse Integration Gradle project from the spring source (https://github.
com/spring-projects/eclipse-integration-gradle/) helps the developer 
to work with Gradle  in Eclipse. This tool offers  support for:

• Working with  multiprojects
• Using Gradle Import Wizard to import Gradle projects into Eclipse
• Using New Gradle Project Wizard to create new Gradle projects
• Using Dependency Management to configure the classpath of the 

Eclipse project
• Executing Gradle tasks using Gradle Task UI
• Integration with the Groovy Eclipse via DSLD (DSL Descriptors)

Following are the steps to install this plugin in Eclipse (3.7.2 or higher) from the 
update site:

1. Launch Eclipse. Navigate to Help | Install New Software.
2. In the Install New Software dialog, click on the Add button to add a 

new site.
3. Enter the Location as http://dist.springsource.com/release/TOOLS/

gradle and Name as Gradle. You can enter any meaningful name you want.
4. Click on OK to add the repository.
5. Select the newly created Gradle repository from the repository list.
6. Check only the box next to Extensions / Gradle Integration | Gradle IDE. 

Click on Next (Refer to Figure 1.2).
7. On the next screen, click on Next.



Getting Started with Gradle

[ 22 ]

8. Accept the terms and conditions and click on Finish. Eclipse should 
download and install  Gradle IDE. Then restart  Eclipse.

Figure 1.2

Working with the Gradle project in IDE
We have successfully  installed Gradle plugin. Now, we'll create a simple Gradle 
project and we'll look into few Eclipse-related important fi les, for  example, .project 
and .classpath. Then we will build the project using the Gradle Task UI.

Following are the steps to create a Gradle project:

1. In Eclipse, navigate to File | New | Gradle | Gradle Project.
2. In the New Gradle Project window, specify the project name as 

FirstGradleProject and select the sample project as Java Quickstart.
3. Click on Finish and wait for the build to be successful.



Chapter 1

[ 23 ]

You will fi nd the following console output:

:cleanEclipseClasspath UP-TO-DATE

:cleanEclipseJdt UP-TO-DATE

:cleanEclipseProject UP-TO-DATE

:cleanEclipse UP-TO-DATE

:eclipseClasspath

…

:eclipseJdt

:eclipseProject

:eclipse

BUILD SUCCESSFUL

The output clearly shows  what is going on here. Gradle initially executes a series of 
clean tasks (cleanEclipseClasspath, cleanEclipse, and so on.), then downloads 
some jar fi les from the Maven repository and fi nally executes a few more tasks 
(eclipseJdt, eclipse, and so on) to  complete the build process.

The autogenerated build.gradle fi le has the following contents:

apply plugin: 'java'
apply plugin: 'eclipse'

sourceCompatibility = 1.5
version = '1.0'
jar {
  manifest {
    attributes 'Implementation-Title': 'Gradle Quickstart', 
      'Implementation-Version': version
  }
}

repositories {
  mavenCentral()
}

dependencies {
  compile group: 'commons-collections', name: 'commons-
    collections', version: '3.2'



Getting Started with Gradle

[ 24 ]

  testCompile group: 'junit', name: 'junit', version: '4.+'
}

test {
  systemProperties 'property': 'value'
}

uploadArchives {
  repositories {
    flatDir {
      dirs 'repos'
    }
  }
}

This build fi le is, quite different from what we created earlier in this chapter. The Java 
and Eclipse plugin declarations were added in the beginning. Project properties such 
as sourceCompatibility and  version were added. The repository was declared as 
mavenCentral(). Dependencies, common-collections, and JUnit were confi gured on 
compile and testCompile respectively. We'll learn each and every component in the 
next chapters; now, let's concentrate on the other artifacts created by the Gradle project.

If you browse the  source code (look for the src folder) of the project, you'll fi nd that 
the application was prepopulated with some Java source code and JUnit test cases.

Apart from the source code and build fi le,a few other fi les, namely, .project, and 
.classpath and a folder, namely, .settings, were added to this Java project. These 
are the default fi les created by Eclipse. As the name suggests, the .project fi le 
contains the metadata information about the project such as name, description and 
build specifi cation. The .classpath fi le describes the Java dependency, external 
library dependencies, and other project dependencies. .settings/org.eclipse.
jdt.core.prefs stores information such as the Java compiler version, source, and 
the target Java version. All these three fi les were created during the build process 
when the eclipse task was executed.

So, we claimed that the Eclipse plugin was responsible for creating all of the Eclipse 
IDE-specifi c fi les. To confi rm, fi rst execute the gradle cleanEclipse command 
from the project of the base folder:

$ gradle cleanEclipse

:cleanEclipseClasspath

:cleanEclipseJdt



Chapter 1

[ 25 ]

:cleanEclipseProject

:cleanEclipse

BUILD SUCCESSFUL

The cleanEclipse task executed three more dependent tasks: 
cleanEclipseClasspath (removes the .classpath fi le), cleanEclipseJdt 
(removes the .settings/org.eclipse.jdt.core.prefs fi le), and 
cleanEclipseProject (removes the .project fi le).

Check whether all the three fi les got deleted from the project, and, fi nally, execute 
the gradle eclipse command to recreate those fi les.

$ gradle eclipse

:eclipseClasspath

:eclipseJdt

:eclipseProject

:eclipse

BUILD SUCCESSFUL

Now the question is if I have a Java project, how do I import that project in 
Eclipse IDE?

We have learned this already and you might have guessed it. It takes just three steps: 
add the Eclipse plugin into  the build fi le (apply the eclipse plugin ), execute Eclipse 
task (gradle eclipse), and fi nally import project using Eclipse File | Import.

Alternatively, you can  use Gradle IDE. From Eclipse, select the project by navigating 
to File | Import | Gradle | Gradle Project, and then perform Build Model and 
fi nish. Use of Gradle IDE helps to avoid all the manual steps mentioned earlier.

We'll conclude this section by exploring Gradle Task UI, which enables us to 
execute tasks. Gradle task execution is supported by the standard Eclipse launching 
framework. This means that before we execute any task, we must create a standard 
Eclipse launch confi guration. To create the launch confi guration, navigate to Gradle 
project | Run As | and click on Gradle Build.



Getting Started with Gradle

[ 26 ]

In the text area, enter the task names you want to execute, such as clean build. Then 
click on Run to execute the tasks. The launch confi guration will be saved as the project 
name by default. In Figure 1.3, the confi guration is saved as FirstGradleProject, which 
is the project name.

Figure 1.3

This launch confi guration  will be saved in Eclipse, so that it can be executed 
again. To launch the previously saved confi guration, FirstGradleProject, you 
need  to navigate to Run As | Gradle Build. This will once again, execute the 
clean build command.



Chapter 1

[ 27 ]

Summary
In this chapter, we briefl y discussed what a Build Automation System is, why do we 
need it, and why Gradle is a popular Build Automation System. You also learned 
how to install Gradle and we created our fi rst Gradle script. Then we discussed 
the command-line options, GUI support, cache management, and startup scripts. 
Finally, we concluded the chapter working with Eclipse IDE with the Gradle Plugin 
to develop a simple Java application.

All the build scripts developed in this chapter were written in Groovy, but we have not 
talked about it. So, in the next chapter, we will learn some basic concepts of the Groovy 
programming language. Next chapter is meant mainly for developers who already 
have some basic knowledge of Java and object-oriented programming concepts.



Purchase the full book 
Get 50% discount on the eBook format using coupon code GRADLE50 

 

 

    

https://www.packtpub.com/web-development/mastering-gradle/?utm_source=gradle.org&utm_medium=referral&utm_campaign=GradleSampleBook
https://www.packtpub.com/web-development/mastering-gradle/?utm_source=gradle.org&utm_medium=referral&utm_campaign=GradleSampleBook
https://www.packtpub.com/web-development/mastering-gradle/?utm_source=gradle.org&utm_medium=referral&utm_campaign=GradleSampleBook


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket true
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /UseDeviceIndependentColor
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


